Statistical power and false positive rates for interdependent outcomes are strongly influenced by test type: Implications for behavioral neuroscience

Author:

Frankot Michelle,Mueller Peyton M.,Young Michael E.,Haar Cole VonderORCID

Abstract

AbstractStatistical errors in preclinical science are a barrier to reproducibility and translation. For instance, linear models (e.g., ANOVA, linear regression) may be misapplied to data that violate assumptions. In behavioral neuroscience and psychopharmacology, linear models are frequently applied to interdependent or compositional data, which includes behavioral assessments where animals concurrently choose between chambers, objects, outcomes, or types of behavior (e.g., forced swim, novel object, place/social preference). The current study simulated behavioral data for a task with four interdependent choices (i.e., increased choice of a given outcome decreases others) using Monte Carlo methods. 16,000 datasets were simulated (1,000 each of 4 effect sizes by 4 sample sizes) and statistical approaches evaluated for accuracy. Linear regression and linear mixed effects regression (LMER) with a single random intercept resulted in high false positives (>60%). Elevated false positives were attenuated in an LMER with random effects for all choice-levels and a binomial logistic mixed effects regression. However, these models were underpowered to reliably detect effects at common preclinical sample sizes. A Bayesian method using prior knowledge for control subjects increased power by up to 30%. These results were confirmed in a second simulation (8,000 datasets). These data suggest that statistical analyses may often be misapplied in preclinical paradigms, with common linear methods increasing false positives, but potential alternatives lacking power. Ultimately, using informed priors may balance statistical requirements with ethical imperatives to minimize the number of animals used. These findings highlight the importance of considering statistical assumptions and limitations when designing research studies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3