Evolutionary graph theory on rugged fitness landscapes

Author:

Kuo Yang Ping,Carja Oana

Abstract

AbstractSpatially-resolved datasets are revolutionizing knowledge in molecular biology, yet are under-utilized for questions in evolutionary biology. To gain insight from these large-scale datasets of spatial organization, we need mathematical representations and modeling techniques that can both capture their complexity, but also allow for mathematical tractability. Specifically, it is hard to link previous deme-based or lattice-based models with datasets exhibiting complex patterns of spatial organization and the role of heterogeneous population structure in shaping evolutionary dynamics is still poorly understood. Evolutionary graph theory utilizes the mathematical representation of networks as a proxy for population structure and has started to reshape our understanding of how spatial structure can direct evolutionary dynamics. However, previous results are derived for the case of a single mutation appearing in the population. Complex traits arise from interactions among multiple genes and these interaction can result in rugged fitness landscapes, where evolutionary dynamics can vastly differ from the dynamics of stepwise fixation. Here, we develop a unifying theory of how heterogenous population structure shapes evolutionary dynamics on rugged fitness landscapes. We show that even a simple extension to a two- mutational landscape can exhibit evolutionary dynamics not observed in deme-based models and that cannot be predicted using previous single-mutation results. We also show how to link these models to spatially-resolved datasets and build the networks of the stem cell niches of the bone marrow. We show that these cellular spatial architectures reduce the probability of neoplasm initiation across biologically relevant mutation rate and fitness distributions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3