Protein Engineering for Thermostability through Deep Evolution

Author:

Chu Huanyu,Tian Zhenyang,Hu Lingling,Zhang Hejian,Chang Hong,Bai Jie,Liu Dingyu,Cheng Jian,Jiang Huifeng

Abstract

AbstractProtein engineering for increased thermostability through iterative mutagenesis and high throughput screening is labor-intensive, expensive and inefficient. Here, we developed a deep evolution (DeepEvo) strategy to engineer protein thermostability through global sequence generation and selection using deep learning models. We firstly constructed a thermostability selector based on a protein language model to extract thermostability-related features in high-dimensional latent spaces of protein sequences with high temperature tolerance. Subsequently, we constructed a variant generator based on a generative adversarial network to create protein sequences containing the desirable function with more than 50% accuracy. Finally, the generator and selector were utilized to iteratively improve the performance of DeepEvo on the model protein glyceraldehyde-3-phosphate dehydrogenase (G3PDH), whereby 8 highly thermostable variants were obtained from only 30 generated sequences, demonstrating the high efficiency of DeepEvo for the engineering of protein thermostability.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3