Genomic surveillance of antimicrobial-resistantEscherichia coliin fecal sludge and sewage in Uganda

Author:

Gomi RyotaORCID,Matsumura YasufumiORCID,Yamamoto Masaki,Tanaka Mai,Komakech Allan John,Matsuda Tomonari,Harada Hidenori

Abstract

ABSTRACTThe global increase of antimicrobial resistance (AMR) is a major public health concern. An effective AMR surveillance tool is needed to track the emergence and spread of AMR. Wastewater surveillance has been proposed as a resource-efficient tool for monitoring AMR carriage in the community. Here, we performed genomic surveillance of antimicrobial-resistantEscherichia coliobtained from fecal sludge and sewage in Uganda to gain insights intoE. coliepidemiology and AMR burden in the underlying population. Selective media containing different antibiotic combinations (cefotaxime, ciprofloxacin, cefotaxime + ciprofloxacin + gentamicin) were used to obtain antimicrobial-resistantE. colifrom fecal sludge and sewage. Short-read sequencing was performed for the obtained isolates, and a subset of isolates (selected from predominant sequence types (STs)) was also subjected to long-read sequencing. Genomic analysis of the obtainedE. coliisolates (n = 181) revealed the prevalence of clonal complex 10, including ST167 (n = 43), ST10 (n = 28), ST1284 (n = 17), and ST617 (n = 4), in both fecal sludge and sewage, irrespective of antibiotics used for selection. We also detected global high-risk clones ST1193 (n = 10) and ST131 (n = 2 clade A, n = 3 subclade C1-M27, and n = 1 subclade C2). Diverse AMR determinants, including extended-spectrum β-lactamase genes (mostlyblaCTX-M-15) and mutations ingyrAandparC, were identified. Analysis of the completed genomes revealed that diverse IncF plasmids and chromosomal integration were the major contributors to the spread of AMR genes in the predominant STs. This study showed that a combination of sewage surveillance (or fecal sludge surveillance) and whole-genome sequencing can be a powerful tool for monitoring AMR carriage in the underlying population.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3