Curbing zoonotic disease spread in multi-host-species systems will require integrating novel data streams and analytical approaches: evidence from a scoping review of bovine tuberculosis

Author:

Conteddu KimberlyORCID,English Holly M.ORCID,Byrne Andrew W.ORCID,Amin BawanORCID,Griffin Laura L.ORCID,Kaur Prabhleen,Morera-Pujol VirginiaORCID,Murphy Kilian J.ORCID,Salter-Townshend MichaelORCID,Smith Adam F.ORCID,Ciuti SimoneORCID

Abstract

AbstractBackgroundZoonotic diseases represent a significant societal challenge in terms of their health and economic impacts. One Health approaches to managing zoonotic diseases are becoming more prevalent, but require novel thinking, tools and cross-disciplinary collaboration. Bovine tuberculosis (bTB) is one example of a costly One Health challenge with a complex epidemiology involving human, domestic animal, wildlife and environmental factors, which require sophisticated collaborative approaches.ObjectiveWe undertook a scoping review of multi-host bTB epidemiology to identify recent trends in species publication focus, methodologies, scales and One Health approaches. We aimed to identify research gaps where novel research could provide insights to inform control policy, for bTB and other zoonoses.ResultsThe review included 167 articles. We found different levels of research attention across episystems, with a significant proportion of the literature focusing on the badger-cattle-TB episystem, with far less attention given to the multi-host episystems of southern Africa. We found a limited number of studies focusing on management solutions and their efficacy, with very few studies looking at modelling exit strategies. Surprisingly, only a small number of studies looked at the effect of human disturbances on the spread of bTB involving wildlife hosts. Most of the studies we reviewed focused on the effect of badger vaccination and culling on bTB dynamics with few looking at how roads, human perturbations and habitat change may affect wildlife movement and disease spread. Finally, we observed a lack of studies considering the effect of weather variables on bTB spread, which is particularly relevant when studying zoonoses under climate change scenarios.ConclusionsSignificant technological and methodological advances have been applied to bTB episystems, providing explicit insights into its spread and maintenance across populations. We identified a prominent bias towards certain species and locations. Generating more high-quality empirical data on wildlife host distribution and abundance, high-resolution individual behaviours and greater use of mathematical models and simulations are key areas for future research. Integrating data sources across disciplines, and a “virtuous cycle” of well-designed empirical data collection linked with mathematical and simulation modelling could provide additional gains for policy-makers and managers, enabling optimised bTB management with broader insights for other zoonoses.

Publisher

Cold Spring Harbor Laboratory

Reference121 articles.

1. The One Health concept: 10 years old and a long road ahead;Frontiers in Veterinary Science,2018

2. Global trends in emerging infectious diseases

3. Ecology of zoonoses: natural and unnatural histories;The Lancet,2012

4. EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control) (2021) The European Union One Health 2019 Zoonoses Report. EFSA Journal 19(2).

5. A systematic review of spatial decision support systems in public health informatics supporting the identification of high risk areas for zoonotic disease outbreaks;International Journal of Health Geographics,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3