3D imaging reveals apical stem cell responses to ambient temperature

Author:

Wenzl ChristianORCID,Lohmann Jan U.ORCID

Abstract

AbstractPlant growth is driven by apical meristems at the shoot and root growth points, which comprise continuously active stem cell populations. While many of the key factors involved in homeostasis of the shoot apical meristem (SAM) have been extensively studied under artificial constant growth conditions, only little is known how variations in the environment affect the underlying regulatory network. To shed light on the responses of the SAM to ambient temperature, we combined 3D live imaging of fluorescent reporter lines that allowed us to monitor the activity of two key regulators of stem cell homeostasis in the SAM namelyCLAVATA3(CLV3)andWUSCHEL (WUS),with computational image analysis to derive morphological and cellular parameters of the SAM. WhereasCLV3expression marks the stem cell population,WUSpromoter activity is confined to the organizing center (OC), the niche cells adjacent to the stem cells, hence allowing us to record on the two central cell populations of the SAM. Applying an integrated computational analysis of our data we found that variations in ambient temperature not only led to specific changes in spatial expression patterns of key regulators of SAM homeostasis, but also correlated with modifications in overall cellular organization and shoot meristem morphology.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3