RNA- and ATAC-sequencing Reveals a UniqueCD83+Microglial Population Focally Depleted in Parkinson’s Disease

Author:

Chatila Z.K.ORCID,Yadav A.,Mares J.,Flowers X.,Yun T.D.,Rashid M.,Talcoff R.,Pelly Z.,Zhang Ya,De Jager P.L.ORCID,Teich A.ORCID,Costa R.,Gomez E. AreaORCID,Martins G.,Alcalay R.ORCID,Vonsattel J.P.,Menon V.ORCID,Bradshaw E.M.ORCID,Przedborski S.ORCID

Abstract

AbstractAll brain areas affected in Parkinson’s disease (PD) show an abundance of microglia with an activated morphology together with increased expression of pro-inflammatory cytokines, suggesting that neuroinflammation may contribute to the neurodegenerative process in this common and incurable disorder. We applied a single nucleus RNA- and ATAC-sequencing approach using the 10x Genomics Chromium platform to postmortem PD samples to investigate microglial heterogeneity in PD. We created a multiomic dataset using substantia nigra (SN) tissues from 19 PD donors and 14 non-PD controls (NPCs), as well as three other brain regions from the PD donors which are differentially affected in this disease: the ventral tegmental area (VTA), substantia inominata (SI), and hypothalamus (HypoTs). We identified thirteen microglial subpopulations within these tissues as well as a perivascular macrophage and a monocyte population, of which we characterized the transcriptional and chromatin repertoires. Using this data, we investigated whether these microglial subpopulations have any association with PD and whether they have regional specificity. We uncovered several changes in microglial subpopulations in PD, which appear to parallel the magnitude of neurodegeneration across these four selected brain regions. Specifically, we identified that inflammatory microglia in PD are more prevalent in the SN and differentially express PD-associated markers. Our analysis revealed the depletion of aCD83andHIF1A-expressing microglial subpopulation, specifically in the SN in PD, that has a unique chromatin signature compared to other microglial subpopulations. Interestingly, this microglial subpopulation has regional specificity to the brainstem in non-disease tissues. Furthermore, it is highly enriched for transcripts of proteins involved in antigen presentation and heat-shock proteins, and its depletion in the PD SN may have implications for neuronal vulnerability in disease.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3