Classifying high-dimensional phenotypes with ensemble learning

Author:

Devine JayORCID,Kurki Helen K.ORCID,Epp Jonathan R.ORCID,Gonzalez Paula N.ORCID,Claes PeterORCID,Hallgrímsson BenediktORCID

Abstract

AbstractClassification is a fundamental task in biology used to assign members to a class. While linear discriminant functions have long been effective, advances in phenotypic data collection are yielding increasingly high-dimensional datasets with more classes, unequal class covariances, and non-linear distributions. Numerous studies have deployed machine learning techniques to classify such distributions, but they are often restricted to a particular organism, a limited set of algorithms, and/or a specific classification task. In addition, the utility of ensemble learning or the strategic combination of models has not been fully explored.We performed a meta-analysis of 33 algorithms across 20 datasets containing over 20,000 high-dimensional shape phenotypes using an ensemble learning framework. Both binary (e.g., sex, environment) and multi-class (e.g., species, genotype, population) classification tasks were considered. The ensemble workflow contains functions for preprocessing, training individual learners and ensembles, and model evaluation. We evaluated algorithm performance within and among datasets. Furthermore, we quantified the extent to which various dataset and phenotypic properties impact performance.We found that discriminant analysis variants and neural networks were the most accurate base learners on average. However, their performance varied substantially between datasets. Ensemble models achieved the highest performance on average, both within and among datasets, increasing average accuracy by up to 3% over the top base learner. Higher class R2values, mean class shape distances, and between– vs. within-class variances were positively associated with performance, whereas higher class covariance distances were negatively associated. Class balance and total sample size were not predictive.Learning-based classification is a complex task driven by many hyperparameters. We demonstrate that selecting and optimizing an algorithm based on the results of another study is a flawed strategy. Ensemble models instead offer a flexible approach that is data agnostic and exceptionally accurate. By assessing the impact of various dataset and phenotypic properties on classification performance, we also offer potential explanations for variation in performance. Researchers interested in maximizing performance stand to benefit from the simplicity and effectiveness of our approach made accessible via the R packagepheble.

Publisher

Cold Spring Harbor Laboratory

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3