One particle per residue is sufficient to describe all-atom protein structures

Author:

Heo Lim,Feig MichaelORCID

Abstract

ABSTRACTAtomistic resolution is considered the standard for high-resolution biomolecular structures, but coarse-grained models are often necessary to reflect limited experimental resolution or to achieve feasibility in computational studies. It is generally assumed that reduced representations involve a loss of detail, accuracy, and transferability. This study explores the use of advanced machine-learning networks to learn from known structures of proteins how to reconstruct atomistic models from reduced representations to assess how much information is lost when the vast knowledge about protein structures is taken into account. The main finding is that highly accurate and stereochemically realistic all-atom structures can be recovered with minimal loss of information from just a single bead per amino acid residue, especially when placed at the side chain center of mass. High-accuracy reconstructions with better than 1 Å heavy atom root-mean square deviations are still possible when only Cα coordinates are used as input. This suggests that lower-resolution representations are essentially sufficient to represent protein structures when combined with a machine-learning framework that encodes knowledge from known structures. Practical applications of this high-accuracy reconstruction scheme are illustrated for adding atomistic detail to low-resolution structures from experiment or coarse-grained models generated from computational modeling. Moreover, a rapid, deterministic all-atom reconstruction scheme allows the implementation of an efficient multi-scale framework. As a demonstration, the rapid refinement of accurate models against cryoEM densities is shown where sampling at the coarse-grained level is guided by map correlation functions applied at the atomistic level. With this approach, the accuracy of standard all-atom simulation based refinement schemes can be matched at a fraction of the computational cost.STATEMENT OF SIGNIFICANCEThe fundamental insight of this work is that atomistic detail of proteins can be recovered with minimal loss of information from highly reduced representations with just a single bead per amino acid residue. This is possible by encoding the existing knowledge about protein structures in a machine-learning model. This suggests that it is not strictly necessary to resolve structures in atomistic detail in experiments, computational modeling, or the generation of protein conformations via neural networks since atomistic details can inferred quickly via the neural network. This increases the relevance of experimental structures obtained at lower resolutions and broadens the impact of coarse-grained modeling.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3