Abstract
AbstractIntermediate filaments (IFs) are integral components of the cytoskeleton. They provide cells with tissue-specific mechanical properties and are involved in numerous cellular processes. Due to their intricate architecture, a 3D structure of IFs has remained elusive. Here we use cryo-focused ion beam milling, cryo-electron microscopy and tomography, to obtain a 3D structure of vimentin IFs (VIFs). VIFs assemble into a modular, densely-packed and highly-ordered helical symmetric structure of 40 α-helices in cross-section, organized into 5 protofibrils. Surprisingly, the intrinsically disordered head domains form an amyloid-like fiber in the center of VIFs, while the intrinsically disordered tails form lateral connections between the protofibrils. Our findings demonstrate how protein domains of low sequence complexity can complement well-folded protein domains to construct a biopolymer with striking strength and stretchability.
Publisher
Cold Spring Harbor Laboratory
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献