Heron: A Knowledge Graph editor for intuitive implementation of python based experimental pipelines

Author:

Dimitriadis GeorgeORCID,Svahn EllaORCID,MacAskill AndrewORCID,Akrami AthenaORCID

Abstract

To realise a research project idea, an experimenter faces a series of conflicting design and implementation considerations, regarding both its hardware and software components. For instance, the ease of implementation, in time and expertise, should be balanced against the ease of future reconfigurability and number of ‘black box’ components. Other, often conflicting, considerations include the level of documentation and ease of reproducibility, resource availability as well as access to online communities. To alleviate this balancing act between opposing requirements we present Heron, a new Python-based platform to construct and run experimental and data analysis pipelines. Heron’s main principle is to allow researchers to design and implement the experimental flow as close as possible to their mental schemata of the experiment, in the form of a Knowledge Graph. Heron is designed to increase the implementation speed of experiments (and their subsequent updates), while minimising the number of incorporated black box components. It enhances the readability and reproducibility of the final implementation and allows the use of combinations of hardware and software otherwise impossible or too costly to achieve. Given this, Heron offers itself to sciences whose needs involve experiments with a large number of interconnected hardware and software components like robotics, neuroscience, behavioural sciences, physics, chemistry, environmental science, etc.. It is designed with those experimentalists in mind which: i) Demand full control of their setup. ii) Prefer not to have to choose between hardware and software that run only on a specific chip/operating system combination. iii) Appreciate the ease and speed that high-level languages (e.g. Python) and Graphical User Interfaces (GUIs) offer them. It assumes an intermediate knowledge of the Python language and ecosystem, offering a flexible and powerful way to construct experimental setups. It removes any inaccessible corners, yet keeps implementation costs significantly reduced compared to using lower level languages. Finally, its use results in a much cleaner and easier to understand code base, amicable to documentation and reproducibility efforts.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3