Building a high-resolution in vivo minimum deformation average model of the human hippocampus

Author:

Jacobsen Nina,Munk Julie Broni,Plocharski Maciej,Østergaard Lasse Riis,Marstaller Lars,Reutens David,Barth Markus,Janke Andrew L.,Bollmann SteffenORCID

Abstract

AbstractObjectiveMinimum deformation averaging (MDA) procedures exploit the information contained in inter-individual variations to generate high-resolution, high-contrast models through iterative model building. However, MDA models built from different image contrasts reside in disparate spaces and their complementary information cannot be utilized easily. The aim of this work was to develop an algorithm for the non-linear alignment of two MDA models with different contrasts to create a high-resolution in vivo model of the human hippocampus with a spatial resolution of 300 μm.MethodsA Turbo Spin Echo MDA model covering the hippocampus was contrast matched to a whole-brain MP2RAGE MDA model and aligned using cross-correlation and non-linear transformation. The contrast matching algorithm followed a global voxel location-based approach to estimate the relationship between intensity values of the two models. The performance of the algorithm was evaluated by comparing it to a non-linear registration obtained using mutual information without contrast matching. The complimentary information from both contrasts was then utilized in an automated hippocampal subfield segmentation pipeline.ResultsThe contrast of the Turbo Spin Echo MDA model could successfully be matched to the MP2RAGE MDA model. Registration using cross correlation provided more accurate alignment of the models compared to a mutual information based approach. The segmentation using ASHS resulted in hippocampal subfield delineations that resembled the tissue boundaries observed in the Turbo Spin Echo MDA model.ConclusionThe developed contrast matching algorithm facilitated the creation of a high-resolution multi-modal in vivo MDA model of the human hippocampus. This model can be used to improve algorithms for hippocampal subfield segmentation and could potentially support the early detection of neurodegenerative diseases.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3