Abstract
ABSTRACTEmbryonic development yields many different cell types in response to just a few families of inductive signals. The property of a signal-receiving cell that determines how it responds to such signals, including the activation of cell type-specific genes, is known as its competence. Here, we show how maternal factors modify chromatin to specify initial competence in the frog Xenopus tropicalis. We identified the earliest engaged regulatory DNA sequences, and inferred from them critical activators of the zygotic genome. Of these, we showed that the pioneering activity of the maternal pluripotency factors Pou5f3 and Sox3 predefines competence for germ layer formation by extensively remodeling compacted chromatin before the onset of signaling. The remodeling includes the opening and marking of thousands of regulatory elements, extensive chromatin looping, and the co-recruitment of signal-mediating transcription factors. Our work identifies significant developmental principles that inform our understanding of how pluripotent stem cells interpret inductive signals.
Publisher
Cold Spring Harbor Laboratory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献