Behaviors and Energy Source ofMycoplasma gallisepticumGliding

Author:

Mizutani MasakiORCID,Miyata MakotoORCID

Abstract

ABSTRACTMycoplasma gallisepticum, an avian-pathogenic bacterium, glides on host tissue surfaces by using a common motility system withMycoplasma pneumoniae. In the present study, we observed and analyzed the gliding behaviors ofM. gallisepticumin detail by using optical microscopes.M. gallisepticumglided at a speed of 0.27 ± 0.09 µm/s with directional changes relative to the cell axis of 0.6 ± 44.6 degrees/5 s without the rolling of the cell body. To examine the effects of viscosity on gliding, we analyzed the gliding behaviors under viscous environments. The gliding speed was constant in various concentrations of methylcellulose but was affected by Ficoll. To investigate the relationship between binding and gliding, we analyzed the inhibitory effects of sialyllactose on binding and gliding. The binding and gliding speed sigmoidally decreased with sialyllactose concentration, indicating the cooperative binding of the cell. To determine the direct energy source of gliding, we used a membrane-permeabilized ghost model. We permeabilizedM. gallisepticumcells with Triton X-100 or Triton X-100 containing ATP and analyzed the gliding of permeabilized cells. The cells permeabilized with Triton X-100 did not show gliding; in contrast, the cells permeabilized with Triton X-100 containing ATP showed gliding at a speed of 0.014 ± 0.007 μm/s. These results indicate that the direct energy source for the gliding motility ofM. gallisepticumis ATP.IMPORTANCEMycoplasmas, the smallest bacteria, are parasitic and occasionally commensal.Mycoplasma gallisepticumis related to human pathogenicMycoplasmasMycoplasma pneumoniaeandMycoplasma genitalium—which causes so-called ‘walking pneumonia’ and non-gonococcal urethritis, respectively. TheseMycoplasmastrap sialylated oligosaccharides, which are common targets among influenza viruses, on host trachea or urinary tract surfaces and glide to enlarge the infected areas. Interestingly, this gliding motility is not related to other bacterial motilities or eukaryotic motilities. Here, we quantitatively analyze cell behaviors in gliding and clarify the direct energy source. The results provide clues for elucidating this unique motility mechanism.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3