Comparative activity of Ceftriaxone, Ciprofloxacin and Gentamicin as a function of bacterial growth rate probed by Escherichia coli chromosome replication in the mouse peritonitis model

Author:

Schei Haugan Maria,Løbner-Olesen Anders,Frimodt-Møller Niels

Abstract

AbstractCommonly used antibiotics exert their effect predominantly on rapidly growing bacterial cells, yet growth dynamics taking place during infection in a complex host environment remain largely unknown. Hence, means to measure in situ bacterial growth rate is essential to predict the outcome of antibacterial treatment. We have recently validated chromosome replication as readout for in situ bacterial growth rate during Escherichia coli infection in the mouse peritonitis model. By the use of two complementary methods (qPCR and fluorescence microscopy) for differential genome origin and terminus copy number quantification, we demonstrated the ability to track bacterial growth rate, both on a population average and on a single-cell level; from one single biological specimen. Here, we asked whether the in situ growth rate could predict antibiotic treatment effect during infection in the same model. Parallel in vitro growth experiments were conducted as proof-of-concept. Our data demonstrate that the activity of commonly used antibiotics Ceftriaxone and Gentamicin correlated with pre-treatment bacterial growth rate; both drugs performing better during rapid growth than during slow growth. Conversely, Ciprofloxacin was less sensitive to bacterial growth rate, both in a homogenous in vitro bacterial population and in a more heterogeneous in vivo bacterial population. The method serves as a platform to test any antibiotic’s dependency upon active in situ bacterial growth. Improved insight into this relationship in vivo could ultimately prove helpful in evaluating future antibacterial strategies.ImportanceMost antibiotics in clinical use exert their effect predominantly on rapidly growing bacterial cells, yet there is a lack of insight into bacterial growth dynamics taking place during infection in vivo. We have applied inexpensive and easily accessible methods for extraction of in situ bacterial growth rate from bacterial chromosome replication during experimental murine infection. This approach not only allows for a better understanding of bacterial growth dynamics taking place during the course of infection, but also serves as a platform to test the activity of different antibiotics as a function of pre-treatment in situ growth rate. The method has the advantage that bacterial growth rate can be probed from a single biological sample, with the potential for extension into clinical use in pre-treatment infected biological specimens. A better understanding of commonly used antibiotics’ level of dependency upon bacterial growth, combined with measurements of in situ bacterial growth rate in infected clinical specimens, could prove helpful in evaluating future antibacterial treatment regimens.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3