Abstract
AbstractThe importance of integrating research findings is incontrovertible and coordinate based meta-analyses have become a popular approach to combine results of fMRI studies when only peaks of activation are reported. Similar to classical meta-analyses, coordinate based meta-analyses may be subject to different forms of publication bias which impacts results and possibly invalidates findings. We develop a tool that assesses the robustness to potential publication bias on cluster level. We investigate the possible influence of the file-drawer effect, where studies that do not report certain results fail to get published, by determining the number of noise studies that can be added to an existing fMRI meta-analysis before the results are no longer statistically significant. In this paper we illustrate this tool through an example and test the effect of several parameters through extensive simulations. We provide an algorithm for which code is freely available to generate noise studies and enables users to determine the robustness of meta-analytical results.
Publisher
Cold Spring Harbor Laboratory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献