Circuit mechanisms underlying chronic epilepsy in a mouse model of focal cortical malformation

Author:

Yang Weiguo,Williams Anthony,Sun Qian-Quan

Abstract

HighlightsEctopic interlaminar excitatory inputs from infragranular layers to layer 2/3 pyramidal neurons is a key component of the hyperexcitable circuitryDisrupted E/I balance was located far away from cortical malformationsDendritic inhibition from somatostatin interneurons play a key role in epileptogenesisClosed-loop optogenetic stimulation to activate remainder somatostatin interneurons irreversibly stops the spontaneous spike-wave discharges in vivo.In BriefYang et al. report abnormal synaptic reorganization in an epileptogenesis zone in a mouse model of cortical malformation. The authors further demonstrate that spontaneous spike-wave discharges can be curbed by selectively activating somatostatin interneurons using close-loop fiber optogenetic stimulation to a small cortical region away from the microgyrus.SummaryHow aberrant neural circuits contribute to chronic epilepsy remains unclear. Using a mouse model of focal cortical malformation with spontaneous seizures, we dissected the circuit mechanisms underlying epileptogenesis. Spontaneous and optogenetically induced hyperexcitable burstsin vivowere present in a cortical region distal to (> 1mm) freeze-lesion induced microgyrus, instead of a region near it. ChR2-assisted circuit mapping revealed ectopic interlaminar excitatory inputs from infragranular layers to layer 2/3 pyramidal neurons as a key component of the hyperexcitable circuitry. This disrupted balance between excitation and inhibition was prominent in the cortical region distal to the microgyrus. Consistently, the synapses of both parvalbumin-positive interneurons (PV) and somatostatin-positive interneurons (SOM) to pyramidal neurons were maladaptive in a layer- and site-specific fashion. Finally, closed-loop optogenetic stimulation of SOM, but not PV, terminated spontaneous spike-wave discharges. Together, these results demonstrate highly site- and cell-type specific synaptic reorganization underlying chronic cortical epilepsy and provide insights into potential treatment strategies for this devastating neurological disorder.

Publisher

Cold Spring Harbor Laboratory

Reference62 articles.

1. Lateral competition for cortical space by layer-specific horizontal circuits

2. Controlled and localized genetic manipulation in the brain;J Cell Mol Med,2006

3. High-frequency Oscillations after Status Epilepticus: Epileptogenesis and Seizure Genesis

4. Bridi, M.C.D. , Zong, F.J. , Min, X. , Luo, N. , Tran, T. , Qiu, J. , Severin, D. , Zhang, X.T. , Wang, G. , Zhu, Z.J. , et al. (2019). Daily Oscillation of the Excitation-Inhibition Balance in Visual Cortical Circuits. Neuron.

5. Enhanced Infragranular and Supragranular Synaptic Input onto Layer 5 Pyramidal Neurons in a Rat Model of Cortical Dysplasia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3