Abstract
ABSTRACTThe anticancer agent, 5-fluorouracil (5-FU), is typically applied in the treatment of various types of cancers because of its properties. Thought to be an inhibitor of the enzyme thymidylate synthase which plays a role in nucleotide synthesis, 5-FU has been found to induce single- and double-strand DNA breaks. The activation of ATR occurs as a reaction to UV- and chemotherapeutic drug-induced replication stress. In this study, we examined the effect of ATR inhibition on 5-FU sensitivity. Using western blotting, we found that 5-FU treatment led to the phosphorylation of ATR. Surviving fractions were remarkably decreased in 5-FU with ATR inhibitor (ATRi) compared to 5-FU with other major DNA repair kinases inhibitors. ATR inhibition enhanced induction of DNA double-strand breaks and apoptosis in 5-FU-treated cells. Using gene expression analysis, we found that 5-FU could induce the activation of intra-S checkpoint. Surprisingly, BRCA2-deficient cells were sensitive to 5-FU in the presence of ATRi. In addition, ATR inhibition enhanced the efficacy of 5-FU treatment, independent of non-homologous end-joining and homologous recombination repair pathways. Findings from the present study suggest ATR as a potential therapeutic target for 5-FU chemotherapy.
Publisher
Cold Spring Harbor Laboratory