Baseline Resting-State Functional Connectivity Determines Subsequent Pain Ratings to a Tonic Ecologically Valid Experimental Model of Orofacial Pain

Author:

Ayoub Lizbeth J.ORCID,McAndrews Mary PatORCID,Barnett Alexander J.ORCID,Jeremy Ho Ka Chun,Cioffi Iacopo,Moayedi MassiehORCID

Abstract

ABSTRACTPain is a subjective experience with significant individual differences. Laboratory studies investigating pain thresholds and experimental acute pain have identified structural and functional neural correlates. However, these types of pain stimuli have limited ecological validity to real-life pain experiences. Here, we use an orthodontic procedure—the insertion of an elastomeric separator between teeth—which typically induces mild to moderate pain that peaks within 2 days and lasts several days. We aimed to determine whether the baseline structure and resting-state functional connectivity (rsFC) of key regions along the trigeminal nociceptive and pain modulatory pathways correlate with subsequent peak pain ratings. Twenty-six healthy individuals underwent structural and resting-state functional (rs-fMRI) scanning prior to the placement of a separator between the first and second molars, which was kept in place for five days. Participants recorded pain ratings three times daily on a 100-mm visual analogue scale. Peak pain was not significantly correlated with diffusion metrics of the trigeminal nerve, or grey matter volume of any brain region. Peak pain did, however, positively correlate with baseline rsFC between the thalamus contralateral to the separator and bilateral insula, and negatively correlated with connectivity between the periaqueductal gray (PAG) and core nodes of the default mode network (medial prefrontal and posterior cingulate cortices). The ascending (thalamic) nociceptive and the descending (PAG) pain modulatory pathways at baseline each explained unique variation in peak pain intensity ratings. In sum, pre-interventional functional neural architecture of both systems determined the individual pain experience to a subsequent ecologically valid pain stimulus.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3