Integrative Omics for Informed Drug Repurposing: Targeting CNS Disorders

Author:

Shukla RammohanORCID,Henkel Nicholas D,Alganem Khaled,Hamoud Abdul-rizaq,Reigle James,Alnafisah Rawan S,Eby Hunter M,Imami Ali S,Creeden Justin,Miruzzi Scott A,Meller Jaroslaw,Mccullumsmith Robert E.

Abstract

AbstractThe treatment of CNS disorders, and in particular psychiatric illnesses, lacks disease-altering therapeutics for many conditions. This is likely due to regulatory challenges involving the high cost and slow-pace of drug development for CNS disorders as well as due to limited understanding of disease causality. Repurposing drugs for new indications have lower cost and shorter development timeline compared to that of de novo drug development. Historically, empirical drug-repurposing is a standard practice in psychiatry; however, recent advances in characterizing molecules with their structural and transcriptomic signatures along with ensemble of data analysis approaches, provides informed and cost-effective repurposing strategies that ameliorate the regulatory challenges. In addition, the potential to incorporate ontological approaches along with signature-based repurposing techniques addresses the various knowledge-based challenges associated with CNS drug development. In this review we primarily discuss signature-basedin silicoapproaches to drug repurposing, and its integration with data science platforms for evidence-based drug repurposing. We contrast variousin silicoand empirical approaches and discuss possible avenues to improve the clinical relevance. These concepts provide a promising new translational avenue for developing new therapies for difficult to treat disorders, and offer the possibility of connecting drug discovery platforms and big data analytics with personalized disease signatures.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using reported pathogenic variants to identify therapeutic opportunities for genetic diseases;Molecular Genetics & Genomic Medicine;2022-11-14

2. Big Data Analytics for Modeling COVID-19 and Comorbidities: An Unmet Need;EAI/Springer Innovations in Communication and Computing;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3