Human organ chip-enabled pipeline to rapidly repurpose therapeutics during viral pandemics

Author:

Si Longlong,Bai Haiqing,Rodas Melissa,Cao Wuji,Oh Crystal Yuri,Jiang Amanda,Moller Rasmus,Hoagland Daisy,Oishi Kohei,Horiuchi Shu,Uhl Skyler,Blanco-Melo Daniel,Albrecht Randy A.,Liu Wen-Chun,Jordan Tristan,Nilsson-Payant Benjamin E.,Logue James,Haupt Robert,McGrath Marisa,Weston Stuart,Nurani Atiq,Kim Seong Min,Zhu Danni Y.,Benam Kambez H.,Goyal Girija,Gilpin Sarah E.,Prantil-Baun Rachelle,Powers Rani K.,Carlson Kenneth,Frieman Matthew,tenOever Benjamin R.,Ingber Donald E.

Abstract

The rising threat of pandemic viruses, such as SARS-CoV-2, requires development of new preclinical discovery platforms that can more rapidly identify therapeutics that are activein vitroand also translatein vivo. Here we show that human organ-on-a-chip (Organ Chip) microfluidic culture devices lined by highly differentiated human primary lung airway epithelium and endothelium can be used to model virus entry, replication, strain-dependent virulence, host cytokine production, and recruitment of circulating immune cells in response to infection by respiratory viruses with great pandemic potential. We provide a first demonstration of drug repurposing by using oseltamivir in influenza A virus-infected organ chip cultures and show that co-administration of the approved anticoagulant drug, nafamostat, can double oseltamivir’s therapeutic time window. With the emergence of the COVID-19 pandemic, the Airway Chips were used to assess the inhibitory activities of approved drugs that showed inhibition in traditional cell culture assays only to find that most failed when tested in the Organ Chip platform. When administered in human Airway Chips under flow at a clinically relevant dose, one drug – amodiaquine - significantly inhibited infection by a pseudotyped SARS-CoV-2 virus. Proof of concept was provided by showing that amodiaquine and its active metabolite (desethylamodiaquine) also significantly reduce viral load in both direct infection and animal-to-animal transmission models of native SARS-CoV-2 infection in hamsters. These data highlight the value of Organ Chip technology as a more stringent and physiologically relevant platform for drug repurposing, and suggest that amodiaquine should be considered for future clinical testing.

Publisher

Cold Spring Harbor Laboratory

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3