Abstract
AbstractA paradigm in neurology is that brain injury-induced motor deficits (e.g. hemiparesis and hemiplegia) arise due to aberrant activity of descending neural pathways. We discovered that a unilateral injury of the hindlimb sensorimotor cortex of rats with completely transected thoracic spinal cord produces hindlimb postural asymmetry with contralateral flexion, and asymmetric changes in nociceptive hindlimb withdrawal reflexes and gene expression patterns in lumbar spinal cord. The injury-induced postural effects were abolished by prior hypophysectomy and were mimicked by transfusion of serum from animals with unilateral brain injury. Antagonists of the opioid and vasopressin receptors blocked formation of hindlimb postural asymmetry suggesting that these neurohormones mediate effects of brain injury on lateralized motor responses. Our data indicate that descending neural control of spinal circuits is complemented by a previously unknown humoral signaling from injured brain to the contra- and ipsilesional hindlimbs, and suggest the existence of a body side-specific neuroendocrine regulation in bilaterally symmetric animals.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献