Effect of phyB and phyC loss-of-function mutations on the wheat transcriptome under short and long day photoperiods

Author:

Kippes Nestor,VanGessel Carl,Hamilton James,Akpinar Ani,Budak Hikmet,Dubcovsky JorgeORCID,Pearce StephenORCID

Abstract

AbstractBackgroundPhotoperiod signals provide important cues by which plants regulate their growth and development in response to predictable seasonal changes. Phytochromes, a family of red and far-red light receptors, play critical roles in regulating flowering time in response to changing photoperiods. A previous study showed that loss-of-function mutations in either PHYB or PHYC result in large delays in heading time and in the differential regulation of a large number of genes in wheat plants grown in an inductive long day (LD) photoperiod.ResultsWe found that under non-inductive short-day (SD) photoperiods, phyB-null and phyC-null mutants were taller, had a reduced number of tillers, longer and wider leaves, and headed later than wild-type plants. Unexpectedly, both mutants flowered earlier in SD than LD, the inverse response to that of wild-type plants. We observed a larger number of differentially expressed genes between mutants and wild-type under SD than under LD, and in both cases, the number was larger for phyB than for phyC. We identified subsets of differentially expressed and alternatively spliced genes that were specifically regulated by PHYB and PHYC in either SD or LD photoperiods, and a smaller set of genes that were regulated in both photoperiods. We observed significantly higher transcript levels of the flowering promoting genes VRN-A1, PPD-B1 and GIGANTEA in the phy-null mutants in SD than in LD, which suggests that they could contribute to the earlier flowering of the phy-null mutants in SD than in LD.ConclusionsOur study revealed an unexpected reversion of the wheat LD plants into SD plants in the phyB-null and phyC-null mutants and identified candidate genes potentially involved in this phenomenon. Our RNA-seq data provides insight into light signaling pathways in inductive and non-inductive photoperiods and a set of candidate genes to dissect the underlying developmental regulatory networks in wheat.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3