Parallel factor analysis enables quantification and identification of highly-convolved data independent-acquired protein spectra

Author:

Buric FilipORCID,Zrimec JanORCID,Zelezniak AleksejORCID

Abstract

AbstractHigh-throughput data-independent acquisition (DIA) is the method of choice for quantitative proteomics, combining the best practices of targeted and shotgun proteomics approaches. The resultant DIA spectra are, however, highly convolved and with no direct precursor-fragment correspondence, complicating the analysis of biological samples. Here we present PARADIAS (PARAllel factor analysis of Data Independent Acquired Spectra), a GPU-powered unsupervised multiway factor analysis framework that deconvolves multispectral scans to individual analyte spectra, chromatographic profiles, and sample abundances, using the PARAFAC tensor decomposition method based on variation of informative spectral features. The deconvolved spectra can be annotated with traditional database search engines or used as a high-quality input for de novo sequencing methods. We demonstrate that spectral libraries generated with PARADIAS substantially reduce the false discovery rate underlying the validation of spectral quantification. PARADIAS covers up to 33 times more total ion current than library-based approaches, which typically use less than 5 % of total recorded ions, thus allowing the quantification and identification of signals from unexplored DIA spectra.

Publisher

Cold Spring Harbor Laboratory

Reference61 articles.

1. Abadi M , Agarwal A , Barham P , Brevdo E , Chen Z , Citro C , Corrado GS , Davis A , Dean J , Devin M , Ghemawat S , Goodfellow I , Harp A , Irving G , Isard M , Jia Y , Jozefowicz R , Kaiser L , Kudlur M , Levenberg J , et al (2016) TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv [cs.DC] Available at: http://arxiv.org/abs/1603.04467

2. The N-way Toolbox for MATLAB

3. Adding a new separation dimension to MS and LC--MS: What is the utility of ion mobility spectrometry?;J. Sep. Sci,2018

4. Detection and correction of interference in SRM analysis

5. PARAFAC2—Part II. Modeling chromatographic data with retention time shifts;Journal of Chemometrics: A Journal of the Chemometrics Society,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3