Metals alter membership but not diversity of a headwater stream microbiome

Author:

Wolff Brian A.ORCID,Clements William H.,Hall Ed K.

Abstract

AbstractMetal contamination from mining or natural weathering is a common feature of surface waters in the American west. Traditionally, stream macroinvertebrate community metrics have been used for stream quality assessments. Advances in microbial analyses have created the potential for routine sampling of aquatic microbiomes as a tool to assess the quality of stream habitat. We sought to determine if microbiome diversity and membership were affected by metal contamination in a manner similar to what has been observed for stream macroinvertebrates, and if so, identify candidate microbial taxa to be used to indicate metal stress in stream ecosystems. We evaluated microbiome membership from sediments at multiple sites within the principal drainage of an EPA superfund site near the headwaters of the Upper Arkansas River, Leadville, CO. From each sample, we extracted DNA and sequenced the 16S rRNA gene amplicon on the Illumina MiSeq platform. We used the remaining sediments to simultaneously evaluate environmental metal concentrations. We also conducted an artificial stream mesocosm experiment using sediments collected from two of the observational study sites. The mesocosm experiment had a 2×2 factorial design: 1) location (upstream or downstream of contaminating tributary), and 2) treatment (metal exposure or control). We found no difference in diversity between upstream and downstream sites in the field. Similarly, diversity changed very little following experimental metal exposure. However, microbiome membership differed between upstream and downstream locations and experimental metal exposure changed microbiome membership in a manner that depended on origin of the sediments used in each mesocosm.ImportanceOur results suggest that microbiomes can be reliable indicators of ecosystem metal stress even when surface water chemistry and other metrics used to assess ecosystem health do not indicate ecosystem stress. Several results presented in this study are consistent with the idea that a microbial response to metals at the base of the food web may be affecting consumers one trophic level above. If effects of metals are mediated through shifts in the microbiome, then microbial metrics, as presented here, may aid in the assessment of stream ecosystems health.

Publisher

Cold Spring Harbor Laboratory

Reference53 articles.

1. Graves J. 2017. Abandoned mines: progress, monitoring, law and regulations. Colorado Department of Natural Resources Division of Reclamation, Mining and Safety Inactive Mine Reclamation Program.

2. Heavy metals structure benthic communities in Colorado mountain streams;Ecol Appl,2000

3. Barbour MT , Gerritsen J , Snyder BD , Stribling JB . 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish, vol 339. US Environmental Protection Agency, Office of Water Washington, DC.

4. Biological assessments of Appalachian streams based on predictive models for fish, macroinvertebrate, and diatom assemblages

5. Method for biological quality assessment of watercourses in Belgium;Hydrobiologia,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3