Abstract
AbstractBackgroundSeveral SARS-CoV-2 vaccine candidates are currently in the pipeline. This study aims to inform SARS-CoV-2 vaccine development, licensure, decision-making, and implementation by determining key preferred vaccine product characteristics and associated population-level impact.MethodsVaccination impact was assessed at various efficacies using an age-structured mathematical model describing SARS-CoV-2 transmission and disease progression, with application for China.ResultsA prophylactic vaccine with efficacy against acquisition (VES) of ≥70% is needed to eliminate this infection. A vaccine withVES<70% will still have a major impact, and may control the infection if it reduces infectiousness or infection duration among those vaccinated who acquire the infection, or alternatively if supplemented with a moderate social-distancing intervention (<20% reduction in contact rate), or complemented with herd immunity. Vaccination is cost-effective. For a vaccine withVESof 50%, number of vaccinations needed to avert one infection is only 2.4, one severe disease case is 25.5, one critical disease case is 33.2, and one death is 65.1. Gains in effectiveness are achieved by initially prioritizing those ≥60 years. Probability of a major outbreak is virtually zero with a vaccine withVES≥70%, regardless of number of virus introductions. Yet, an increase in social contact rate among those vaccinated (behavior compensation) can undermine vaccine impact.ConclusionsEven a partially-efficacious vaccine can offer a fundamental solution to control SARS-CoV-2 infection and at high cost-effectiveness. In addition to the primary endpoint on infection acquisition, developers should assess natural history and disease progression outcomes and/or proxy biomarkers, since such secondary endpoints may prove critical in licensure, decision-making, and vaccine impact.
Publisher
Cold Spring Harbor Laboratory
Reference60 articles.
1. Yang, Y. , et al., The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun, 2020: p. 102434.
2. Lauer, S.A. , et al., The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann Intern Med, 2020.
3. Wu, Z. and J.M. McGoogan , Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA, 2020.
4. World Health Organization, Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Available from :https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf. Accessed on March 10, 2020. 2020.
5. World Health Organization (WHO), WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 2020. Available from: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-1911-march-2020. Accessed on March 14, 2020. 2020.