Optimal COVID-19 epidemic control until vaccine deployment

Author:

Djidjou-Demasse R.ORCID,Michalakis Y.,Choisy M.,Sofonea M. T.,Alizon S.

Abstract

AbstractSince Dec 2019, the COVID-19 epidemic has spread over the globe creating one of the greatest pandemics ever witnessed. This epidemic wave will only begin to roll back once a critical proportion of the population is immunised, either by mounting natural immunity following infection, or by vaccination. The latter option can minimise the cost in terms of human lives but it requires to wait until a safe and efficient vaccine is developed, a period estimated to last at least 18 months. In this work, we use optimal control theory to explore the best strategy to implement while waiting for the vaccine. We seek a solution minimizing deaths and costs due to the implementation of the control strategy itself. We find that such a solution leads to an increasing level of control with a maximum reached near the 16th month of the epidemics and a steady decrease until vaccine deployment. The average containment level is approximately 50% during the 25-months period for vaccine deployment. This strategy strongly out-performs others with constant or cycling allocations of the same amount of resources to control the outbreak. This work opens new perspectives to mitigate the effects of the ongoing COVID-19 pandemics, and be used as a proof-of-concept in using mathematical modelling techniques to enlighten decision making and public health management in the early times of an outbreak.

Publisher

Cold Spring Harbor Laboratory

Reference27 articles.

1. Anderson, R. M. and R. M. May . n.d. Infectious Diseases of Humans. Dynamics and Control. Oxford University Press.

2. Anderson, R. M. , H. Heesterbeek , D. Klinkenberg and T. D. Hollingsworth . n.d. How Will Country-Based Mitigation Measures Influence the Course of the COVID-19 Epidemic?

3. Chen, N. , M. Zhou , X. Dong , J. Qu , F. Gong , Y. Han , Y. Qiu , J. Wang , Y. Liu , Y. Wei , J. Xia , T. Yu , X. Zhang and L. Zhang . n.d. Epidemiological and Clinical Characteristics of 99 Cases of 2019 Novel Coronavirus Pneumonia in Wuhan, China: A Descriptive Study. 395(10223):507–513.

4. Diekmann, O. , J. A. Heesterbeek and J. A. Metz . n.d. On the Definition and the Computation of the Basic Reproduction Ratio $R_0$ in Models for Infectious Diseases in Heterogeneous Populations. 28(4):365–82.

5. Dorigatti, I. , L. Okell , A. Cori , N. Imai , M. Baguelin , S. Bhatia , A. Boonyasiri , Z. Cucunubá , G. Cuomo-Dannenburg , R. FitzJohn , H. Fu , K. Gaythorpe , A. Hamlet , N. Hong , M. Kwun , D. Laydon , G. Nedjati-Gilani , S. Riley , S. van Elsland , H. Wang , R. Wang , C. Walters , X. Xi , C. Donnelly and A. Ghani . n.d. Report 4: Severity of 2019-Novel Coronavirus (nCoV). p. 12.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3