An improved mathematical prediction of the time evolution of the Covid-19 Pandemic in Italy, with Monte Carlo simulations and error analyses

Author:

Ciufolini Ignazio,Paolozzi Antonio

Abstract

AbstractWe present an improved mathematical analysis of the time evolution of the Covid-19 pandemic in Italy and a statistical error analyses of its evolution, including Monte Carlo simulations with a very large number of runs to evaluate the uncertainties in its evolution. A previous analysis was based on the assumption that the number of nasopharyngeal swabs would be constant. However the number of daily swabs is now more than five times what it was when we did our previous analysis. Therefore, here we consider the time evolution of the ratio of the new daily cases to number of swabs, which is more representative of the evolution of the pandemic when the number of swabs is increasing or changing in time. We consider a number of possible distributions representing the evolution of the pandemic in Italy and we test their prediction capability over a period of up to four weeks. The results show that a distribution of the type of Planck black body radiation law provides very good forecasting. The use of different distributions provides an independent possible estimate of the uncertainty. We then consider five possible trajectories for the number of daily swabs and we estimate the potential dates of a substantial reduction in the number of new daily cases. We then estimate the spread in a substantial reduction, below a certain threshold, of the daily cases per swab among the Italian regions. We finally perform Monte Carlo simulations with 25000 runs to evaluate a random uncertainty in the prediction of the date of a substantial reduction in the number of diagnosed daily cases per swab.

Publisher

Cold Spring Harbor Laboratory

Reference12 articles.

1. Ciufolini, I. , and Paolozzi A. , Prediction of the time evolution of the Covid-19 Pandemic in Italy by a Gauss Error Function and Monte Carlo simulations. Submitted to BioRxiv on 03.26.2020 and transferred on 03.27.2020 to MedRxiv, doi: https://doi.org/10.1101/2020.03.27.20045104.

2. Mathematical prediction of the time evolution of the COVID-19 pandemic in Italy by a Gauss error function and Monte Carlo simulations

3. Press, W. H. , Flannery, B. P. , Teukolsky, S. A. , & Vetterling, W. T. (1989). Numerical recipes (Vol. 3). Cambridge: Cambridge University Press.

4. A statistical distribution function of wide applicability. Journal of Applied Mechanics;Transactions of the American Society of Mechanical Engineers,1951

5. E.L. Crow and K. Shimizu (Editors), Lognormal distributions: theory and applications, Marcel Dekker, Inc. New York, Basel, 1988.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3