Redistribution of cholesterol from vesicle to plasmalemma controls fusion pore geometry

Author:

Rituper Boštjan,Guček Alenka,Lisjak Marjeta,Gorska Urszula,Šakanović Aleksandra,Bobnar Saša Trkov,Lasič Eva,Božić Mićo,Abbineni Prabhodh S.,Jorgačevski Jernej,Kreft Marko,Verkhratsky Alexei,Platt Frances M.,Anderluh Gregor,Stenovec Matjaž,Božič Bojan,Coorssen Jens R.,Zorec RobertORCID

Abstract

ABSTRACTEukaryotic vesicles fuse with the plasmalemma to form the fusion pore, previously considered to be unstable with widening of the pore diameter. Recent studies established that the pore diameter is stable, reflecting balanced forces of widening and closure. Proteins are considered key regulators of the fusion pore, whereas the role of membrane lipids remains unclear. Super-resolution microscopy revealed that lactotroph secretory vesicles discharge cholesterol after stimulation of exocytosis; subsequently, vesicle cholesterol redistributes to the outer leaflet of the plasmalemma. Cholesterol depletion in lactotrophs and astrocytes evokes release of vesicle hormone, indicating that cholesterol constricts the fusion pore. A new model of cholesterol-dependent fusion pore diameter regulation is proposed. High-resolution measurements of fusion pore conductance confirmed that the fusion pore widens with cholesterol depletion and constricts with cholesterol enrichment. In fibroblasts lacking the Npc1 protein, in which cholesterol accumulates in vesicles, the fusion pore is narrower than in controls, showing that cholesterol regulates fusion pore geometry.Graphical AbstractTop: stages through which a vesicle interacts with the plasmalemma. Stage A denotes hemifusion, which proceeds to stage B, with a narrow fusion pore, which can then reversibly open (stage C), before widening fully (stage D). Bottom: redistribution of cholesterol from the vesicle to the outer leaflet of the plasmalemma controls fusion pore constriction.In BriefA membrane pore is formed when the vesicle membrane fuses with the plasmalemma. Proteins were considered key regulators of the opening and closing of this fusion pore. Here, evidence is provided to show that cholesterol, a membrane constituent, determines a radial force constricting the fusion pore, revealing that the fusion pore functions as a proteolipidic structure.HighlightsIntravesicular cholesterol redistributes to the outer leaflet of the plasmalemma.Cholesterol depletion widens the fusion pore, whereas cholesterol enrichment constricts the fusion pore.A model of cholesterol-dependent force preventing fusion pore widening is developed.Disease-related increase in vesicle cholesterol constricts the fusion pore.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3