Omics-Based Interaction Framework – a systems model to reveal molecular drivers of synergy

Author:

García Jezreel PantaleónORCID,Kulkarni Vikram V.,Reese Tanner C.,Wali Shradha,Wase Saima J.,Zhang Jiexin,Singh RatnakarORCID,Caetano Mauricio S.,Moghaddam Seyed Javad,Johnson Faye M.,Wang Jing,Wang Yongxing,Evans Scott E.ORCID

Abstract

AbstractBioactive molecule library screening strategies may empirically identify effective combination therapies. However, without a systems theory to interrogate synergistic responses, the molecular mechanisms underlying favorable drug-drug interactions remain unclear, precluding rational design of combination therapies. Here, we introduce Omics-Based Interaction Framework (OBIF) to reveal molecular drivers of synergy through integration of statistical and biological interactions in supra-additive biological responses. OBIF performs full factorial analysis of feature expression data from single vs. dual factor exposures to identify molecular clusters that reveal synergy-mediating pathways, functions and regulators. As a practical demonstration, OBIF analyzed a therapeutic dyad of immunostimulatory small molecules that induces synergistic protection against influenza A pneumonia. OBIF analysis of transcriptomic and proteomic data identified biologically relevant, unanticipated cooperation between RelA and cJun that we subsequently confirmed to be required for the synergistic antiviral protection. To demonstrate generalizability, OBIF was applied to data from a diverse array of Omics platforms and experimental conditions, successfully identifying the molecular clusters driving their synergistic responses. Hence, OBIF is a phenotype-driven systems model that supports multiplatform exploration of synergy mechanisms.

Publisher

Cold Spring Harbor Laboratory

Reference39 articles.

1. A protocol to evaluate RNA sequencing normalization methods

2. Antony J (2014). 6 – Full Factorial Designs. In Design of Experiments for Engineers and Scientists, Antony J (ed) pp 63–85. Oxford: Elsevier

3. Multi-level and hybrid modelling approaches for systems biology;Computational and Structural Biotechnology Journal,2017

4. Sex specific function of epithelial STAT3 signaling in pathogenesis of K-ras mutant lung cancer;Nature communications,2018

5. Caetano MS , Hassane M , Van HT , Bugarin E , Cumpian AM , McDowell CL , Cavazos CG , Zhang H , Deng S , Diao L , et al (2018) Gene Expression Omnibus GSE109000 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109000) [DATASET]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3