Author:
Sjøgård Martin,Bourguignon Mathieu,Costers Lars,Dumitrescu Alexandru,Coolen Tim,Roshchupkina Liliia,Destoky Florian,Bertels Julie,Niesen Maxime,Ghinst Marc Vander,van Schependom Jeroen,Nagels Guy,Urbain Charline,Peigneux Philippe,Goldman Serge,Woolrich Mark W.,De Tiège Xavier,Wens Vincent
Abstract
AbstractHuman brain activity is not merely responsive to environmental context but includes intrinsic dynamics, as suggested by the discovery of functionally meaningful neural networks at rest, i.e., even without explicit engagement of the corresponding function. Yet, the neurophysiological coupling mechanisms distinguishing intrinsic (i.e., task-invariant) from extrinsic (i.e., task-dependent) brain networks remain indeterminate. Here, we investigated functional brain integration using magnetoencephalography throughout rest and various tasks recruiting different functional systems and modulating perceptual/cognitive loads. We demonstrated that two distinct modes of neural communication continually operate in parallel: extrinsic coupling supported by phase synchronization and intrinsic integration encoded in amplitude correlation. Intrinsic integration also contributes to phase synchronization, especially over short (second-long) timescales, through modulatory effects of amplitude correlation. Our study establishes the foundations of a novel conceptual framework for human brain function that fundamentally relies on electrophysiological features of functional integration. This framework blurs the boundary between resting-state and task-related neuroimaging.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献