An opaque cell-specific expression program of secreted proteases and transporters allows cell-type cooperation in Candida albicans

Author:

Lohse Matthew B.,Brenes Lucas R.,Ziv Naomi,Winter Michael B.,Craik Charles S.,Johnson Alexander D.

Abstract

AbstractAn unusual feature of the opportunistic pathogen C. albicans is its ability to stochastically switch between two distinct, heritable cell types called white and opaque. Here, we show that only opaque cells, in response to environmental signals, massively up-regulate a specific group of secreted proteases and peptide transporters, allowing exceptionally efficient use of proteins as sources of nitrogen. We identify the specific proteases (members of the secreted aspartyl protease (SAP) family) needed for opaque cells to proliferate under these conditions, and we identify four transcriptional regulators of this specialized proteolysis and uptake program. We also show that, in mixed cultures, opaque cells enable white cells to also proliferate efficiently when proteins are the sole nitrogen source. Based on these observations, we suggest that one role of white-opaque switching is to create mixed populations where the different phenotypes derived from a single genome are shared between two distinct cell types.SummaryThe opportunistic human fungal pathogen Candida albicans switches between two distinct, heritable cell types, named “white” and “opaque.” We show that opaque cells, in response to proteins as the sole nitrogen source, up-regulate a specialized program, including specific secreted aspartyl proteases and peptide transporters. We demonstrate that, in mixed cultures, opaque cells enable white cells to respond and proliferate more efficiently under these conditions. These observations suggest that white-opaque switching creates mixtures of cells where the population characteristics - which derive from a single genome - reflect the contributions of two distinct cell types.Dataset Reference NumbersThe .RAW files for both sets of Mass Spectrometry experiments have been deposited at the ProteoSAFe resource (https://proteomics.ucsd.edu/ProteoSAFe/).MSP-MS experiment reference number: MSV000085279. For reviewer access use login “MSV000085279_reviewer” and password “candidamspms”.Proteomics experiment reference number: MSV000085283. For reviewer access use login “MSV000085283_reviewer” and password “candidaprot”.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3