Signal diversification is associated with corollary discharge evolution in weakly electric fish

Author:

Fukutomi MatasaburoORCID,Carlson Bruce A.ORCID

Abstract

ABSTRACTCommunication signal diversification is a driving force in the evolution of sensory and motor systems. However, little is known about the evolution of sensorimotor integration. Mormyrid fishes generate stereotyped electric pulses (electric organ discharge [EOD]) for communication and active sensing. The EOD has diversified extensively, especially in duration, which varies across species from 0.1 to over 10 ms. In the electrosensory hindbrain, a corollary discharge that signals the timing of EOD production provides brief, precisely timed inhibition that effectively blocks responses to self-generated EODs. However, corollary discharge inhibition has only been studied in a few species, all with short duration EODs. Here, we asked how corollary discharge inhibition has coevolved with the diversification of EOD duration. We addressed this question by comparing 7 mormyrid species having varied EOD duration. For each individual fish, we measured EOD duration and then measured corollary discharge inhibition by recording evoked potentials from midbrain electrosensory nuclei. We found that delays in the onset of corollary discharge inhibition were strongly correlated with EOD duration as well as delay to the first peak of the EOD. In addition, we showed that electrosensory receptors respond to self-generated EODs with spikes occurring in a narrow time window immediately following the first peak of the EOD. Direct comparison of time courses between the EOD and corollary discharge inhibition revealed that the inhibition overlaps the first peak of the EOD. Our results suggest that internal delays have shifted the timing of corollary discharge inhibition to optimally block responses to self-generated signals.SIGNIFICANCE STATEMENTCorollary discharges are internal copies of motor commands that are essential for brain function. For example, corollary discharge allows an animal to distinguish self-generated from external stimuli. Despite widespread diversity in behavior and its motor control, we know little about the evolution of corollary discharges. Mormyrid fishes generate stereotyped electric pulses used for communication and active sensing. In the electrosensory pathway that processes communication signals, a corollary discharge inhibits sensory responses to self-generated signals. We found that fish with long duration pulses have delayed corollary discharge inhibition, and that this time-shifted corollary discharge optimally blocks electrosensory responses to the fish’s own signal. Our study provides the first evidence for evolutionary change in sensorimotor integration related to diversification of communication signals.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3