Abstract
ABSTRACTThe health of a cell depends on accurate translation and proper protein folding; misfolding can lead to aggregation and disease. The first opportunity for a protein to fold occurs during translation, when the ribosome and surrounding environment can affect the energy landscape of the nascent chain. However, quantifying these environmental effects is challenging due to the ribosomal proteins and rRNA, which preclude most spectroscopic measurements of protein energetics. We have applied two gel-based approaches, pulse proteolysis and force-peptide arrest assays, to probe the folding and unfolding pathways of RNase H ribosome-stalled nascent chains. We find that ribosome-stalled RNase H has an increased unfolding rate compared to free RNase H, which completely accounts for observed changes in protein stability and indicates that the folding rate is unchanged. Using arrest peptide-based force-profile analysis, we assayed the force generated during the folding of RNase H on the ribosome. Surprisingly, we find that population of the RNase H folding intermediate is required to generate sufficient force to release the SecM stall and that readthrough of the stall sequence directly correlates with the stability of the folding intermediate. Together, these data imply that the folding pathway of RNase H is unchanged on the ribosome. Furthermore, our data indicate that the ribosome promotes unfolding while the nascent chain is proximal to the ribosome, which may limit the deleterious effects of misfolding and assist in folding fidelity.
Publisher
Cold Spring Harbor Laboratory