Wharton’s Jelly-derived mesenchymal stromal cells retain their immunophenotype and immunomodulating characteristics after transfection with polyethylenimine

Author:

Ramos-Murillo Ana IsabelORCID,Rodríguez Elizabeth,Ricaurte Cristian,Beltrán Karl,Camacho Bernardo,Salguero Gustavo A.,Godoy-Silva Rubén Darío

Abstract

AbstractBackgroundWharton’s Jelly-derived mesenchymal stromal cells (WJ-MSCs) present several advantages over other sources of multipotent stem cells, not only because they are obtained from neonatal umbilical cord, which is considered a biological waste, but also display higher proliferation rate and low senescence at later passages compared to stromal cells obtained from other sources. In the field of tissue engineering, WJ-MSCs have a wide therapeutic potential, due to their multipotential capacity, which can be reinforced if cells are genetically modified to direct their differentiation towards a specific lineage; unfortunately, as primary cells, WJ-MSC are difficult to transfect. Therefore, the objective of the present work was to standardize a protocol for the transfection of WJ-MSCs using a cationic polymer. Such protocol is important for future developments that contemplate the genetic modification of WJ-MSCs for therapeutic purposes.MethodsIn this work, WJ-MSCs were genetically modified using polyethylenimine (PEI) and a lentiviral plasmid that encodes for green fluorescent protein (pGFP). To achieve WJ-MSCs transfection, complexes between PEI and pGFP, varying its composition (N/P ratio), were evaluated and characterized by size, zeta potential and cytotoxicity. At the N/P ratio condition where the highest transfection efficiencies were obtained, immunophenotype, immunomodulation properties and multipotential capacity of WJ-MSCs were evaluated.ResultsHere, we present the standardization of the transfection conditions of the WJ-MSCs in a monolayer culture with PEI. The concentrations of plasmid and PEI that have the best transfection efficiencies were establishedConclusionsTransfection with PEI doesn’t affect immunophenotype, immunomodulatory properties and differentiation capacity of WJ-MSCs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3