Author:
Young Guang-Huar,Lin Jiun-Tsai,Cheng Yi-Fang,Ho Chia-Fang,Kuok Qian-Yu,Hsu Ru-Chun,Liao Wan-Rou,Chen Chin-Chen,Chen Han-Min
Abstract
AbstractAdenine phosphoribosyltransferase (APRT) is the key enzyme in purine salvage by the incorporation of adenine and phosphoribosyl pyrophosphate to provide adenylate nucleotide. The up-regulated APRT found in wound skin correlated with the demands of repair in diabetic mice. Administration of adenine on the wound of diabetic mice exhibited elevated ATP levels in organismic skin and accelerated wound healing. In vitro studies showed that APRT utilized adenine to rescue cellular ATP levels and proliferation against hydrogen peroxide-induced oxidative damage. LC-MS/MS-based analysis of total adenylate nucleotides in NIH-3T3 fibroblast showed that adenine addition enlarged the cellular adenylate pool, reduced the adenylate energy charge, and provided more AMP for the generation of ATP in further. These data indicated the role of APRT during diabetic wound healing by regulating the nucleotide pool after injury and demonstrated the improvement by topical adenine, which highlights its value as a promising agent in therapeutic intervention. Our study provided an explanation for the up- regulation of APRT in tissue repair and adenine supplement resulted in an enlargement of the adenylate pool for ATP generation.
Publisher
Cold Spring Harbor Laboratory