Procentriole microtubules as drivers of centriole reduplication

Author:

Vasquez-Limeta Alejandra,Sullenberger Catherine,Kong Dong,Lukasik Kimberly,Shukla Anil,Loncarek JadrankaORCID

Abstract

ABSTRACTCentriole reduplication leads to the formation of supernumerary centrosomes, which promote cellular transformation, invasion and are a hallmark of tumors. A close association between a mother centriole and a procentriole (engagement), established during centriole duplication, intrinsically blocks reduplication. Premature loss of centriole association predisposes centrioles for reduplication and occurs during various types of cell cycle arrests in the presence of high Polo-like kinase 1 activity. Here we use nano-scale imaging and biochemistry to reveal the processes leading to the loss of centriole association and reduplication. We discover that centriole reduplication is driven by events occurring on procentriole microtubule walls. These events are mechanistically different from mitotic centriole separation driven by Pericentrin and Separase but are similar to the physiological process of centriole distancing occurring in unperturbed cycling G2 cells. We propose a concept in which centriole reduplication is a consequence of hijacked and amplified centriole maturation process.HighlightsSeparase-mediated Pericentrin reorganization is not required for centriole distancing and reduplication in interphase.Expression of active Plk1 in S phase leads to centrosomal ultrastructural changes resembling G2 phase.Procentrioles without microtubule walls cannot disengage.Centriole distancing is intrinsically regulated by the events occurring on procentriole microtubules.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From tip to toe – dressing centrioles in γTuRC;Journal of Cell Science;2021-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3