Abstract
AbstractAdvances in whole genome sequencing promise to enable the accurate and comprehensive structural variant (SV) discovery. Dissecting SVs from whole genome sequencing (WGS) data presents a substantial number of challenges and a plethora of SV-detection methods have been developed. Currently, there is a paucity of evidence which investigators can use to select appropriate SV-detection tools. In this paper, we evaluated the performance of SV-detection tools using a comprehensive PCR-confirmed gold standard set of SVs. In contrast to the previous benchmarking studies, our gold standard dataset included a complete set of SVs allowing us to report both precision and sensitivity rates of SV-detection methods. Our study investigates the ability of the methods to detect deletions, thus providing an optimistic estimate of SV detection performance, as the SV-detection methods that fail to detect deletions are likely to miss more complex SVs. We found that SV-detection tools varied widely in their performance, with several methods providing a good balance between sensitivity and precision. Additionally, we have determined the SV callers best suited for low and ultra-low pass sequencing data.
Publisher
Cold Spring Harbor Laboratory
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献