Anti-apoptotic clone 11 derived peptides induce in vitro death of CD4+ T cells susceptible to HIV-1 infection

Author:

Mikhailova Anastassia,Valle-Casuso José Carlos,David Annie,Monceaux Valérie,Volant Stevenn,Passaes Caroline,Elfidha Amal,Müller-Trutwin Michaela,Poyet Jean-Luc,Sáez-Cirión AsierORCID

Abstract

ABSTRACTHIV-1 successfully establishes long-term infection in its target cells despite viral cytotoxic effects. We have recently shown that cell metabolism is an important factor driving CD4+ T-cell susceptibility to HIV-1 and the survival of infected cells. We show here that expression of anti-apoptotic clone 11 (AAC-11), an anti-apoptotic factor upregulated in many cancers, increased with progressive CD4+ T cell memory differentiation in association with the expression of cell cycle, activation and metabolism genes and correlated with susceptibility to HIV-1 infection. Synthetic peptides based on the LZ domain sequence of AAC-11, responsible for its interaction with molecular partners, were previously shown to be cytotoxic to cancer cells. Here we observed that these peptides also blocked HIV-1 infection by inducing cell death of HIV-1 susceptible primary CD4+ T-cells across all T-cell subsets. The peptides targeted metabolically active cells and had the greatest effect on effector and transitional CD4+ T cell memory subsets. Our results suggest that AAC-11 survival pathway is potentially involved in the survival of HIV-1 infectable cells and provide a proof of principle that some cellular characteristics can be targeted to eliminate the cells offering the best conditions to sustain HIV-1 replication.IMPORTANCEAlthough antiretroviral treatment efficiently blocks HIV multiplication, it cannot eliminate the cells already carrying integrated proviruses. In the search for a HIV cure the identification of new potential targets to selectively eliminate infected cells is of the outmost importance. We show here that peptides derived from the anti-apoptotic clone 11 (AAC-11), which expression levels correlated with susceptibility to HIV-1 infection of CD4+ T-cells, induced cytotoxicity in CD4+ T-cells showing the highest levels of activation and metabolic activity, conditions known to favor HIV-1 infection. Accordingly, CD4+ T-cells that survived the cytotoxic action of the AAC-11 peptides were resistant to HIV-1 replication. Our results identify a new potential molecular pathway to target HIV-1 infection.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3