Mycobacteria tolerate carbon monoxide by remodelling their respiratory chain

Author:

Bayly Katherine,Cordero Paul R. F.ORCID,Huang Cheng,Schittenhelm Ralf B.,Grinter RhysORCID,Greening ChrisORCID

Abstract

AbstractCarbon monoxide (CO) is a gas infamous for its acute toxicity. The toxicity of CO predominantly stems from its tendency to form carbonyl complexes with transition metals, thus inhibiting the heme-prosthetic groups of proteins, including the terminal oxidases of the respiratory chain. While CO has been proposed as an antibacterial agent, the evidence supporting its toxicity towards bacteria is equivocal, and its cellular targets remain poorly defined. In this work, we investigate the physiological response of mycobacteria to CO. We show that Mycobacterium smegmatis is highly resistant to the toxic effects of CO, exhibiting normal growth parameters when cultured in its presence. We profiled the proteome of M. smegmatis during growth in CO, identifying strong induction of cytochrome bd oxidase and members of the dos regulon, but relatively few other changes. We show that the activity of cytochrome bd oxidase is resistant to CO, whereas cytochrome bcc-aa3 oxidase is strongly inhibited by this gas. Consistent with these findings, growth analysis shows that M. smegmatis lacking cytochrome bd oxidase displays a significant growth defect in the presence of CO, while induction of the dos regulon appears to be unimportant for adaption to CO. Altogether, our findings suggest that M. smegmatis has considerable resistance to CO and benefits from respiratory flexibility to withstand its inhibitory effects.ImportanceCarbon monoxide has an infamous reputation as a toxic gas and it has been suggested that it has potential as an antibacterial agent. Despite this, the means by which bacteria resist its toxic effects are not well understood. In this study we determine the physiological response of Mycobacterium smegmatis to growth in CO. We show for the first time that the cytochrome bd oxidase is inherently resistant to CO and is deployed by M. smegmatis to tolerate the presence of this gas. Further, we show that aside from this remodelling of its respiratory chain, M. smegmatis makes few other functional changes to its proteome, suggesting it has a high level of inherent resistance to CO.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3