Statistical and network-based analysis of Italian COVID-19 data: communities detection and temporal evolution

Author:

Milano MariannaORCID,Cannataro MarioORCID

Abstract

AbstractCoronavirus disease (COVID-19) outbreak started at Wuhan, China, and it has rapidly spread across China and many other countries. Italy is one of the European countries most affected by the COVID-19 disease, and it has registered high COVID-19 death rates and the death toll. In this article, we analyzed different Italian COVID-19 data at the regional level for the period February 24 to March 29, 2020. The analysis pipeline includes the following steps. After individuating groups of similar or dissimilar regions with respect to the ten types of available COVID-19 data using statistical test, we built several similarity matrices (reported in Supplementary file). Then, we mapped those similarity matrices into networks where nodes represent Italian regions and edges represent similarity relationships (edge length is inversely proportional to similarity). Then, network-based analysis was performed mainly discovering communities of regions that show similar behaviour. Then, network-based analysis was performed by running several community detection algorithms on those networks and by underlying communities of regions that show similar behaviour. The network-based analysis of Italian COVID-19 data is able to elegantly show how regions form communities, i.e. how they join and leave them, along time and how community consistency changes along time and with respect to the different available data.

Publisher

Cold Spring Harbor Laboratory

Reference10 articles.

1. Giuseppe Agapito , Pietro Hiram Guzzi , and Mario Cannataro . Challenges and opportunities for visualization and analysis of graph-modeled medical data. 2017.

2. Design of integrated system for heterogeneous network query terminal

3. Clinical features of patients infected with 2019 novel coronavirus in wuhan, china;The Lancet,2020

4. Alessia Lai , Annalisa Bergna , Carla Acciarri , Massimo Galli , and Gianguglielmo Zehender . Early phylogenetic estimate of the effective reproduction number of sars-cov-2. Journal of medical virology, 2020.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3