Chitosan primes plant defence mechanisms against Botrytis cinerea, including expression of Avr9/Cf-9 rapidly-elicited genes

Author:

De Vega Daniel,Holden Nicola,Hedley Pete E,Morris Jenny,Luna EstrellaORCID,Newton Adrian

Abstract

AbstractCurrent crop protection strategies against the fungal pathogen Botrytis cinerea rely on a combination of conventional fungicides and host genetic resistance. However, due to pathogen evolution and legislation in the use of fungicides, these strategies are not sufficient to protect plants against this pathogen. Defence elicitors can stimulate plant defence mechanisms through a phenomenon known as priming. Priming results in a faster and/or stronger expression of resistance upon pathogen recognition by the host. This work aims to study priming of a commercial formulation of the elicitor chitosan. Treatments with chitosan result in induced resistance in solanaceous and brassicaceous plants. In tomato plants, enhanced resistance has been linked with priming of callose deposition and accumulation of the plant hormone jasmonic acid (JA). Large-scale transcriptomic analysis revealed that chitosan primes gene expression at early time-points after infection. In addition, two novel tomato genes with a characteristic priming profile were identified, Avr9/Cf-9 rapidly-elicited protein 75 (ACRE75) and 180 (ACRE180). Transient and stable overexpression of ACRE75, ACRE180 and their Nicotiana benthamiana homologs, revealed that they are positive regulators of plant resistance against B. cinerea. This provides valuable information in the search for strategies to protect Solanaceae plants against B. cinerea.

Publisher

Cold Spring Harbor Laboratory

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3