DivIVA is essential in Deinococcus radiodurans and its C terminal domain regulates new septum orientation during cell division

Author:

Chaudhary Reema,Kota Swathi,Misra Hari SORCID

Abstract

AbstractFtsZ assembly at mid cell position in rod shaped bacteria is regulated by gradient of MinCDE complex across the poles. In round shaped bacteria, which lack predefined poles and the next plane of cell division is perpendicular to previous plane, the determination of site for FtsZ assembly is intriguing. Deinococcus radiodurans a coccus shaped bacterium, is characterized for its extraordinary resistance to DNA damage. Here we report that DivIVA a putative component of Min system in this bacterium (drDivIVA) interacts with cognate cell division and genome segregation proteins. The deletion of full length drDivIVA was found to be indispensable while its C-terminal deletion (ΔdivIVAC) was dispensable but produced distinguishable phenotypes like slow growth, altered plane for new septum formation and angular septum. Both wild type and mutant showed FtsZ foci formation and their gamma radiation responses were nearly identical. But unlike in wild type, the FtsZ localization in mutant cells was found to be away from orthogonal axis with respect to plane of previous septum. Notably, DivIVA-RFP localizes to membrane during cell division and then perpendicular to previous plane of cell division. In trans expression of drDivIVA in ΔdivIVAC background could restore the wild type pattern of septum formation perpendicular to previous septum. These results suggested that DivIVA is an essential protein in D. radiodurans and the C-terminal domain that contributes to its interaction with MinC determines the plane of new septum formation, possibly by controlling MinC oscillation through orthogonal axis in the cells.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3