An ecological study of socioeconomic predictors in detection of COVID-19 cases across neighborhoods in New York City

Author:

Whittle Richard S.ORCID,Diaz-Artiles AnaORCID

Abstract

AbstractBackgroundNew York City was the first major urban center of the COVID-19 pandemic in the USA. Cases are clustered in the city, with certain neighborhoods experiencing more cases than others. We investigate whether potential socioeconomic factors can explain between-neighborhood variation in the number of detected COVID-19 cases.MethodsData were collected from 177 Zip Code Tabulation Areas (ZCTA) in New York City (99.9% of the population). We fit multiple Bayesian Besag-York-Mollié (BYM) mixed models using positive COVID-19 tests as the outcome and a set of 10 representative economic, demographic, and health-care associated ZCTA-level parameters as potential predictors. The BYM model includes both spatial and nonspatial random effects to account for clustering and overdispersion.ResultsMultiple different regression approaches indicated a consistent, statistically significant association between detected COVID-19 cases and dependent (under 18 or 65+ years old) population, male to female ratio, and median household income. In the final model, we found that an increase of only 1% in dependent population is associated with a 2.5% increase in detected COVID-19 cases (95% confidence interval (CI): 1.6% to 3.4%, p < 0.0005). An increase of 1 male per 100 females is associated with a 1.0% (95% CI: 0.6% to 1.5%, p < 0.0005) increases in detected cases. A decrease of $10,000 median household income is associated with a 2.5% (95% CI: 1.0% to 4.1% p = 0.002) increase in detected COVID-19 cases.ConclusionsOur findings indicate associations between neighborhoods with a large dependent population, those with a high proportion of males, and low-income neighborhoods and detected COVID-19 cases. Given the elevated mortality in aging populations, the study highlights the importance of public health management during and after the current COVID-19 pandemic. Further work is warranted to fully understand the mechanisms by which these factors may have affected the number of detected cases, either in terms of the true number of cases or access to testing.

Publisher

Cold Spring Harbor Laboratory

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3