Is a long hygroscopic awn an advantage for Themeda triandra in drier areas?

Author:

Morris Craig D

Abstract

AbstractThemeda triandra has bigeniculate hygroscopic lemma seed awns that twist when wet and drying, thereby transporting the caryopsis across the soil surface into suitable germination microsites. The prediction that awns would be longer in drier grassland and have greater motility to enable them to move quickly and further to find scarce germination sites was tested in KwaZulu-Natal. Awns (n = 100) were collected from 16 sites across a mean annual precipitation gradient (575-1223 mm), ranging from 271-2097 m a.s.l. The daily movement of hydrated long and short awns (n = 10) across blotting paper was tracked for five days, and the rotational speed of anchored awns was measured. Awn length varied considerably (mean: 41.4-63.2 mm; sd: 3.44-8.99) but tended to increase (r = 0.426, p = 0.099) not decline, with increasing MAP. Awn length was unrelated to elevation, temperature and aridity indices. Long awns rotated at the same rate (2 min 48 sec) but moved twice as fast (46.3 vs. 22.1 mm day-1) and much further (maximum: 82.1 vs. 38.6 mm day-1) than short awns. Whether moisture limits awn development, the benefit of longer awns to negotiate densely tufted mesic grassland, and the multifunctionality of awns require investigation.

Publisher

Cold Spring Harbor Laboratory

Reference35 articles.

1. The function of the hygroscopic awn of Themeda triandra;Journal of the Grassland Society of Southern Africa,1990

2. Regeneration ecology of Chrysopogon aucheri and Cymbopogon jwarancusa in upland Balochistan: I. Morphology, viability and movement of seeds (spikelets);Pakistan Journal of Biological Sciences,2000

3. An awn typology for Australian native grasses (Poaceae);Australian Journal of Botany,2019

4. On the hygroscopic mechanism by which certain seeds are enabled to bury themselves in the ground;Transactions of the Linnean Society of London, 2nd Series. Botany,1876

5. Hygroscopic seeds;Nature,1877

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3