Fussing about fission: defining variety among mainstream and exotic apicomplexan cell division modes

Author:

Gubbels Marc-JanORCID,Keroack Caroline D.,Dangoudoubiyam SrivenyORCID,Worliczek Hanna L.,Paul Aditya S.,Bauwens Ciara,Elsworth BrendanORCID,Engelberg KlemensORCID,Howe Daniel K.,Coppens IsabelleORCID,Duraisingh Manoj T.ORCID

Abstract

AbstractCellular reproduction defines life, yet our textbook-level understanding of cell division is limited to a small number of model organisms centered around humans. The horizon on cell division variants is expanded here by advancing insights on the fascinating cell division modes found in the Apicomplexa, a key group of protozoan parasites. The Apicomplexa display remarkable variation in offspring number, whether karyokinesis follows each S/M-phase or not, and whether daughter cells bud in the cytoplasm or bud from the cortex. We find that the terminology used to describe the various manifestations of asexual apicomplexan cell division emphasizes either the number of offspring or site of budding, which are not directly comparable features and has led to confusion in the literature. Division modes have been primarily studied in two human pathogenic Apicomplexa, malaria-causing Plasmodium spp. and Toxoplasma gondii, a major cause of opportunistic infections. Plasmodium spp. divide asexually by schizogony, producing multiple daughters per division round through a cortical budding process, though at several life-cycle nuclear amplifications are not followed by karyokinesis. T. gondii divides by endodyogeny producing two internally budding daughters per division round. Here we add to this diversity in replication mechanisms by considering the cattle parasite Babesia bigemina and the pig parasite Cystoisospora suis. B. bigemina produces two daughters per division round by a ‘binary fission’ mechanism whereas C. suis produces daughters through both endodyogeny and multiple internal budding known as endopolygeny. In addition, we provide new data from the causative agent of equine protozoal myeloencephalitis (EPM), Sarcocystis neurona, which also undergoes endopolygeny but differs from C. suis by maintaining a single multiploid nucleus. Overall, we operationally define two principally different division modes: internal budding found in cyst-forming Coccidia (comprising endodyogeny and two forms of endopolygeny) and external budding found in the other parasites studied (comprising the two forms of schizogony, binary fission and multiple fission). Progressive insights into the principles defining the molecular and cellular requirements for internal versus external budding, as well as variations encountered in sexual stages are discussed. The evolutionary pressures and mechanisms underlying apicomplexan cell division diversification carries relevance across Eukaryota.Contribution to the FieldMechanisms of cell division vary dramatically across the Tree of Life, but the mechanistic basis has only been mapped for several model organisms. Here we present cell division strategies across Apicomplexa, a group of obligate intracellular parasites with significant impact on humans and domesticated animals. Asexual apicomplexan cell division is organized around assembly of daughter buds, but division forms differ in the cellular site of budding, number of offspring per division round, whether each S-phase follows karyokinesis and if mitotic rounds progress synchronously. This varies not just between parasites, but also between different life-cycle stages of a given species. We discuss the historical context of terminology describing division modes, which has led to confusion on how different modes relate to each other. Innovations in cell culture and genetics together with light microscopy advances have opened up cell biological studies that can shed light on this puzzle. We present new data for three division modes barely studied before. Together with existing data, we show how division modes are organized along phylogenetic lines and differentiate along external and internal budding mechanisms. We also discuss new insights into how the variations in division mode are regulated at the molecular level, and possess unique cell biological requirements.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3