Big dairy data to disentangle the effect of geo-environmental, physiological and morphological factors on milk production of mountain-pastured Braunvieh cows

Author:

Duruz SolangeORCID,Vajana EliaORCID,Burren Alexander,Flury Christine,Joost StéphaneORCID

Abstract

1.SummaryThe transhumance system, which consists in moving animals to high mountain pastures during summer, plays a considerable role in preserving both local biodiversity and traditions, as well as protecting against natural hazard. In cows, particularly, milk production is observed to decline as a response to food shortage and climatic stress, leading to atypical lactation curves that are barely described by current lactation models. Here, we relied on five million monthly milk records from over 200,000 Braunvieh and Original Braunvieh cows to devise a new model accounting for transhumance, and test the influence of environmental, physiological, and morphological factors on cattle productivity. Counter to expectations, environmental conditions in the mountain showed a globally limited impact on milk production during transhumance, with cows in favourable conditions producing only 10% less compared to cows living in adverse conditions, and with precipitation in spring and altitude revealing to be the most production-affecting variables. Conversely, physiological factors as lactation number and pregnancy stage presented an important impact over the whole lactation cycle with 20% difference in milk production, and may therefore alter the way animals respond to transhumance. Finally, the considered morphological factors (cow height and foot angle) presented a smaller impact during the whole lactation cycle (10% difference in milk production). The present findings can help farmers to establish sustainable strategies for alleviating the negative effects of transhumance on productivity and preserving this important livestock practice.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3