Abstract
ABSTRACTThe molecular process of transcription by RNA Polymerase II is highly conserved among eukaryotes (“classic model”). Intriguingly, a distinct way of locating transcription start sites (TSSs) was found in a budding yeast Saccharomyces cerevisiae (“scanning model”). The origin of the “scanning model” and its underlying genetic mechanisms remain unsolved. Herein, we applied genomic approaches to address these questions. We first identified TSSs at a single-nucleotide resolution for 12 yeast species using the nAnT-iCAGE technique, which significantly improved the annotations of these genomes by providing accurate 5’boundaries of protein-coding genes. We then infer the initiation mechanism of a species based on its TSS maps and genome sequences. We found that the “scanning model” had originated after the split of Yarrowia lipolytica and the rest of budding yeasts. An adenine-rich region immediately upstream of TSS had appeared during the evolution of the “scanning model” species, which might facilitate TSS selection in these species. Both initiation mechanisms share a strong preference for pyrimidine-purine dinucleotides surrounding the TSS. Our results suggested that the purine is required for accurately recruiting the first nucleotide, increasing the chance of being capped during mRNA maturation, which is critical for efficient translation initiation. Based on our findings, we proposed a model of TSS selection for the “scanning model” species. Besides, our study also demonstrated that the intrinsic sequence feature primarily determines the distribution of initiation activities within a core promoter (core promoter shape).
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献