The origin and evolution of a distinct mechanism of transcription initiation in yeasts

Author:

Lu Zhaolian,Lin ZhenguoORCID

Abstract

ABSTRACTThe molecular process of transcription by RNA Polymerase II is highly conserved among eukaryotes (“classic model”). Intriguingly, a distinct way of locating transcription start sites (TSSs) was found in a budding yeast Saccharomyces cerevisiae (“scanning model”). The origin of the “scanning model” and its underlying genetic mechanisms remain unsolved. Herein, we applied genomic approaches to address these questions. We first identified TSSs at a single-nucleotide resolution for 12 yeast species using the nAnT-iCAGE technique, which significantly improved the annotations of these genomes by providing accurate 5’boundaries of protein-coding genes. We then infer the initiation mechanism of a species based on its TSS maps and genome sequences. We found that the “scanning model” had originated after the split of Yarrowia lipolytica and the rest of budding yeasts. An adenine-rich region immediately upstream of TSS had appeared during the evolution of the “scanning model” species, which might facilitate TSS selection in these species. Both initiation mechanisms share a strong preference for pyrimidine-purine dinucleotides surrounding the TSS. Our results suggested that the purine is required for accurately recruiting the first nucleotide, increasing the chance of being capped during mRNA maturation, which is critical for efficient translation initiation. Based on our findings, we proposed a model of TSS selection for the “scanning model” species. Besides, our study also demonstrated that the intrinsic sequence feature primarily determines the distribution of initiation activities within a core promoter (core promoter shape).

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3