Permutation-based Identification of Important Biomarkers for Complex Diseases via Black-box Models

Author:

Mi XinleiORCID,Zou Baiming,Zou Fei,Hu Jianhua

Abstract

AbstractStudy of human disease remains challenging due to convoluted disease etiologies and complex molecular mechanisms at genetic, genomic, and proteomic levels. Many machine learning-based methods, including deep learning and random forest, have been developed and widely used to alleviate some analytic challenges in complex human disease studies. While enjoying the modeling flexibility and robustness, these model frameworks suffer from non-transparency and difficulty in interpreting the role of each individual feature due to their intrinsic black-box natures. However, identifying important biomarkers associated with complex human diseases is a critical pursuit towards assisting researchers to establish novel hypotheses regarding prevention, diagnosis and treatment of complex human diseases. Herein, we propose a Permutation-based Feature Importance Test (PermFIT) for estimating and testing the feature importance, and for assisting interpretation of individual feature in various black-box frameworks, including deep neural networks, random forests, and support vector machines. PermFIT (available athttps://github.com/SkadiEye/deepTL) is implemented in a computationally efficient manner, without model refitting for each permuted data. We conduct extensive numerical studies under various scenarios, and show that PermFIT not only yields valid statistical inference, but also helps to improve the prediction accuracy of black-box models with top selected features. With the application to the Cancer Genome Atlas (TCGA) kidney tumor data and the HITChip atlas BMI data, PermFIT clearly demonstrates its practical usage in identifying important biomarkers and boosting performance of black-box predictive models.

Publisher

Cold Spring Harbor Laboratory

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3