Bet hedging buffers budding yeast against environmental instability

Author:

Bagamery Laura E.ORCID,Justman Quincey A.,Garner Ethan C.ORCID,Murray Andrew W.ORCID

Abstract

ABSTRACTTo grow and divide, cells must extract resources from dynamic and unpredictable environments. Organisms thus possess redundant metabolic pathways for distinct contexts. In budding yeast, ATP can be produced from carbon by mechanisms that prioritize either speed (fermentation) or yield (respiration). We find that in the absence of predictive cues, cells vary in their intrinsic ability to switch metabolic strategies from fermentation to respiration. We observe subpopulations of yeast cells which either rapidly adapt or enter a shock state characterized by deformation of many cellular structures, including mitochondria. This capacity to adapt is a bimodal and heritable state. We demonstrate that metabolic preparedness confers a fitness advantage during an environmental shift but is costly in a constant, high-glucose environment, and we observe natural variation in the frequency of prepared cells across wild yeast strains. These experiments suggest that bet-hedging has evolved in budding yeast.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3